Cointime

Download App
iOS & Android

Micro oracles: a simple commitment-augmented funding mechanism

From Ethresear.ch by Ajesiroo

A bit of background. This was a little idea that sprung up while I was working on a completely unrelated, much more complicated oracle-based project. I wrote a short paper on it the following weekend, and isn’t something I invested a whole lot of time in because I assumed something like it probably already exists. Just recently, I looked into things a bit more and asked some people who might know, and to my surprise, nothing seems to be along the same lines of what I’m proposing here.

This post is more or less just the paper found here verbatim, minus citation markers:

https://ajesiroo.github.io/micro-oracles 3

Abstract

Standard on-chain funding mechanisms are often prone to misaligned incentives, both in the form of grants, where mismanaging of resources is common, and in the form of post factum rewards, where backers occasionally renege on prior assurances. Multi-node oracles are sometimes used to mitigate these drawbacks by requiring confirmation of an off-chain event prior to disbursement, but they are typically difficult to implement as they require significant considerations around economic viability and security. We propose a simple oracle system that can be reduced to two parties. A contribution is held in a smart contract and a portion of the amount is reserved, representing a minimum commitment level. Upon the actualisation of an off-chain event, the backer can either transfer the full contribution to the recipient or revert the majority of the contribution and burn the reserved portion in the process. The minimum commitment level not only serves as a signalling device for the recipient, but disincentivises the backer from making allocations arbitrarily.

1. Introduction

Conventional on-chain contribution schemes often carry the same fundamental trust assumptions observed in the context of off-chain equivalents. This most typically takes the form of contributors trusting the recipient, as we see in applications such as Gitcoin Grants and Giveth, but in less common cases the dynamic is reversed and in the setting of post factum reward schemes, the recipient must trust that contributors will fulfil pre-defined assurances upon the realisation of a deliverable. In both scenarios there is significant potential for misaligned incentives; up-front funding often allows recipients to mismanage resources, sometimes to the point of outright fraud, and post factum rewards can enable contributors to renege on prior commitments even after some criteria is satisfied. Recent on-chain approaches that try to mitigate some of these issues typically centre on oracles consisting of many nodes, sometimes in tandem with cryptoeconomic incentives to encourage participants to attest to an event honestly. The major downside with these mechanisms, however, is that they consist of many “moving parts” and their inherent complexity not only makes them difficult to implement, but require significant considerations both around their economic viability and the multitude of potential attack vectors.

A complementary approach that does not attenuate counterparty trust assumptions to the same extent as the aforementioned oracles, but nevertheless incentivises the various parties to follow through on reasonable expectations, involves programatically reserving a portion of a contribution in such a way that it can only be released to the recipient along with the remainder of the contribution, or burned and effectively making it inaccessible by any party. This encourages the recipient to develop some pre-defined deliverable, as they are able to observe a degree of commitment from the counterparty, while simultaneously allowing the backer to revert the majority of the funding if expectations were not met. The major advantage of this approach is simplicity: rather than requiring many participants to ensure the viability of the oracle, the mechanism can be reduced to a single contributor and recipient, which in turn alleviates some of the by-products stemming from more complex mechanisms.

2. Micro Oracles

A commitment level, typically several percentage of the overall contribution, is held in the core smart contract comprising the system, and the backer can release this amount together with the primary component of the contribution at any point in the future. The backer can also opt to revert the majority of the contribution to the originating address, but in doing so the reserved portion is burned, thus the latter represents a minimum commitment on the part of the backer. This has a signalling effect that may be instrumental in the recipient’s decision to develop their project further, while at the same time providing some incentive for the contributor to remain nominally consistent with their indicated intentions.

Screen Shot 2024-01-26 at 8.08.27 pm2120×832 31 KB

2.1 Commitment Levels

A variety of different formulas can be used to determine the portion of the contribution that represents the minimum commitment level. Perhaps most logically, it can be derived as a fixed percentage of the overall amount, generally between 4%-15%, and this attribute of scaling in proportion with contribution allows for a greater absolute commitment in the context of larger contributions where more is at stake for both parties. Alternatively, a regressive or capped approach can be used, where the relative commitment level as a percentage decreases as the overall contribution rises, enabling more manageable minimum commitments despite larger contribution sizes. A flat rate could also be considered an option, although at the expense of the flexibility that the aforementioned approaches provide.

2.2 Privacy

For certain applications, there may be an expectation of privacy for both the contributor and the recipient. The current best practice to enable pseudonymity between the various participants is through the use of zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs). An intermediate step before interacting with the main system would be required, where private addresses are assigned to regular externally owned accounts. A less encompassing approach to private addresses would be to obfuscate only the individual transactions, and while being more straightforward to implement, it does not provide the same level of privacy as the former.

2.3 Other Considerations

One of the main drawbacks with the mechanism is that it could lead to misuse under certain circumstances by the contributor. If the recipient is not fully cognizant of the implications of the non-committed portion of the contribution, and the system is used as a primary rather than auxiliary source of funding, a malicious participant could attempt to use it as a device to incentivise the development of a deliverable with the intention of reverting the majority of the contribution from the outset. This would still come at a cost to the bad actor, as the portion that represents the commitment level will necessarily be burned, but it is nevertheless an important consideration. For this reason, it is crucial that the inherent properties of the mechanism, including its limitations compared to oracles with stronger mitigation of trust assumptions, is described clearly as part of the user experience. As touched upon previously, the system may be best suited as a complementary source of funding, particularly where there is already an impetus to develop the project, or as an approach for smaller milestones of an overarching project.

Another facet that should be explored is the implementation of minimum hold periods, which in practical terms, amounts to first checking if block.number exceeds a pre-defined threshold prior to calling the transfer function. The utility of such a check may be marginal, however, as the backer will still be able to ultimately release or revert the main component of the contribution.

References

Gitcoin Grants. Retrieved Jan 12, 2024 from https://grants.gitcoin.co 1

Giveth. Retrieved Jan 12, 2024 from https://giveth.io 1

Ajesiroo. 2021. Ternary Funding and Joint Tokens: A Trustless Approach to Public Goods Funding. Retrieved Jan 12, 2024 from https://ajesiroo.github.io/tf.pdf

Clément Lesaege, Federico Ast, and William George. 2019. Kleros Short Paper. Retrieved Jan 12, 2024 from https://kleros.io/whitepaper.pdf

UMA Data Verification Mechanism: Adding Economic Guarantees to Blockchain Oracles. Retrieved Jan 12, 2024 from https://github.com/UMAprotocol/whitepaper/blob/59c8e065048a1eecb944a445a5e77f96851b4b1a/UMA-DVM-oracle-whitepaper.pdf 2

Comments

All Comments

Recommended for you

  • Crypto trading ecosystem LazyBear completes strategic financing of 4 million USDT

    The cryptocurrency trading ecosystem LazyBear announced the completion of a strategic financing of 4 million USDT, with participation from Gogeko Labs, DWF Labs, Shadow Labs, Salad Labs, Bees Network, REI Network, IBIT, Crypto Bullish, SYNBO Protocol, Bazaars, Sypool, Bitcoin Gbox, GemX Crypto, Wikibit, and others. It is reported that LazyBear is a cryptocurrency trading ecosystem for retail traders, committed to providing users with an industry-leading, low-fee, inclusive, and enjoyable trading experience.

  • Tether Invests $200M in Majority Stake of Brain-Computer Interface Company Blackrock Neurotech

    Tether's venture capital division, Tether Evo, has invested $200 million to acquire a majority stake in Blackrock Neurotech, a company that develops medical devices powered by brain signals to aid those impacted by paralysis and neurological disorders. The investment will fund the roll-out and commercialization of the devices and research and development purposes. Tether, the issuer of stablecoin USDT, has recently established four divisions to expand beyond stablecoin issuance and believes in nurturing emerging technologies with transformative capabilities. Paolo Ardoino, CEO of Tether, stated that Blackrock Neurotech's brain-computer-interfaces have the potential to open new realms of communication, rehabilitation, and cognitive enhancement.

  • Turnkey Raises $15M Series A Funding to Expand Wallet Infrastructure for Crypto Developers

    New York-based Turnkey has secured $15m in Series A funding led by Lightspeed Faction and Galaxy Ventures, with participation from Sequoia, Coinbase Ventures, Alchemy, Figment Capital, and Mirana Ventures. The company, founded by the team behind Coinbase Custody, offers a wallet infrastructure that enables developers to build anything that involves a wallet or cryptographic transaction. Turnkey plans to use the funds to expand operations and development efforts, and has already integrated with companies including Alchemy, Dynamic, Goldfinch, Halliday, Thunder Terminal, and Kinto. The product suite offers embedded and smart wallet services, biometric passkey logins, and seamless onboarding experiences for users.

  • Thai regulator to crack down on deceptive cryptocurrency ads

    Cryptocurrency advertisements that contain false, exaggerated, distorted, concealed, or misleading information violate Thai regulations. Regulatory agencies in major cryptocurrency markets have also taken similar measures to minimize investment losses in cryptocurrencies. For example, the UK Financial Conduct Authority (FCA) issued 450 illegal cryptocurrency advertising alerts in 2023 alone. In addition, in November 2023, the Spanish National Securities Market Commission, the main securities market regulatory agency, condemned fraudulent cryptocurrency asset promotion activities on X and reiterated the company's obligation to comply with local laws. The Thai Securities and Exchange Commission reminded cryptocurrency exchanges to include appropriate warnings about investment risks and to avoid attracting new users through special promotions. He warned that violating the above guidelines would result in "legal punishment".

  • Volume 180: Digital Asset Fund Flows Weekly Report

    US$435 outflows continue as incumbent ETF issuers continue to see withdrawals

  • Russia to impose cryptocurrency restrictions, exempting miners and central bank projects

    Russia will implement cryptocurrency restrictions, exempting miners and central bank projects. Starting from September 1st, Russia will impose strict restrictions on the circulation of cryptocurrencies such as Bitcoin, only allowing the issuance of digital financial assets within its jurisdiction. Anatoly Aksakov, Chairman of the Financial Market Committee of the State Duma, led this initiative. This is part of a wider government effort to control the cryptocurrency ecosystem in the face of escalating geopolitical tensions. Aksakov stated that the upcoming legislation aims to restrict non-Russian cryptocurrency transactions to strengthen the dominance of the ruble. Meanwhile, recent reports indicate that Russian entities have used cryptocurrencies, particularly Tether's USDT, to purchase key components for military technology.

  • Ethereum stablecoin transaction volume exceeds $1 trillion so far in April, setting a new record

    On April 29th, The Block data shows that as of April 28th, the trading volume of stablecoins on the Ethereum blockchain reached a record high of $1.08 trillion in April, with DAI trading volume ranking first at $578.07 billion, followed by USDC at $268.15 billion in second place, and USDT at $198.62 billion in third place.

  • Shenyu: Up to one billion users' cloud input methods may have leaked input content. Please take immediate measures to reduce the risk.

    On April 29th, Cobo co-founder and CEO Shen Yu wrote on X platform that the cloud input method used by up to one billion users may have leaked input content. If you have entered mnemonic words or other sensitive information through any of the following cloud input methods, please take immediate measures to reduce the risk.

  • EU member states prepare to enforce landmark crypto law, MiCA

    The European Union is set to enforce MiCA, a crypto law that mandates national regulators to license and supervise service providers. While the regulation is EU-wide, countries can implement slightly different technical standards that crypto firms must adhere to. MiCA's specialized rules for stablecoin issuers will take effect in a few months, followed by licensing and other requirements for crypto firms broadly in December. Each jurisdiction must transpose the EU regulation into local law, select which of their regulators will oversee crypto, and prepare to authorize token issuers and other service providers. Regulators are facing challenges in implementing the new legislation, particularly in terms of licensing requirements, and each country's crypto industry has its own concerns about implementation and proposed laws.

  • The total open interest of BTC contracts on the entire network dropped to $29.83 billion

    According to Coinglass data, the total open position of BTC futures contracts on the entire network is 478,180 BTC, equivalent to 29.83 billion US dollars.